GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MICROWAVE & RADAR ENGINEERING (COURSE CODE: 3351103)

Diploma Programme in which this course is offered	Semester in which offered		
Electronics and communication Engineering	5 th Semester		

1. RATIONALE

The knowledge of microwave devices is essential for electronics and communication engineering diploma holders and they need to assimilate it in order to maintain Microwave devices used in Telecommunication Industry. Hence, the basic knowledge of microwave signal generation, propagation, amplification and measurement is vital. This course has been designed to achieve the diploma engineer will maintain microwave devices, components and accessories used in telecommunication industry.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Install and Maintain microwave devices, components and accessories used in telecommunication field.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Distinguish Electromagnetic wave propagation through reflections from voltage and current transmission.
- ii. Analyze performance of microwave components from field point of view.
- iii. Maintain microwave components and Set up of microwave bench for optimum operation.
- iv. Maintain microwave semiconductor devices used to realized amplifiers and oscillators.
- v. Maintain RADAR system as microwave application.

Teaching Scheme		Total	Examination Scheme						
(In Hours)		Credits	Theory Marks		Theory Marks		Prac	ctical	Total
			(L+T+P)			Ma	ırks	Marks	
L	Т	Р	С	ESE	PA	ESE	PA	150	
4	0	2	6	70	30	20	30	130	

4. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, ESE - End Semester Examination; PA - Progressive Assessment

Unit	Major Learning Outcomes	Topics and Sub-topics		
0	(Major outcomes in cognitive domain)			
Unit – I.	1a. Describe EM wave frequency bands	1.1 Microwayes: frequency		
Transmission	and spectrum	band, EM waves, General		
lines and	1b. State the strengths and limitations of	applications of		
Microwaves	microwave communication	microwaves		
·	1. Evaluin the equivalent singuit of a true	1.2. Tronomission lines.		
	12. Explain the equivalent circuit of a two wire transmission line.14. Obtain the general equation for a two	Parameters, general line equation, lossless line, $\lambda/4$		
	1e. State characteristics of lossless	line, standing waves , VSWR, reflection		
	transmission line.	coefficient ,stub matching		
	1f. Explain impedance matching using stub	(single and double), skin effect		
	1g. Using design equations solve example			
	of single stub matching			
Unit– II	2a. Describe propagation of microwaves	2.1 Waveguides: Wave		
Microwave	through waveguide and explain cutoff	propagation through		
Propagation	wavelength.	guided medium,		
and	2b. Differentiate between transmission	reflections of waves		
Components	line and waveguide.			
	2c. Calculate cut off wavelength, group			
	and phase velocities, characteristics			
	wave impedance of any waveguide			
	parameters.			
	2d. Distinguish the following: cut off	2.1 Rectangular waveguide :		
	wavelength, group and phase	structure, cut off		
	velocities, characteristics wave	wavelength, group and		
	impedance, TE, TM modes, S	phase velocities,		
	Parameters.	characteristic wave		
		impedance, TE, TM		
		modes, field patterns,		
		examples, S Parameters		
		basics		
	2e. Compare the working of rectangular	2.2 Circular waveguide:		
	waveguide and circular waveguide.	structure, cut off		
		wavelength, modes,		
		examples, comparison		
		with rectangular		
		waveguide		
	2f. State applications of following	2.3 Microwave Components:		
	microwave components: Tees, hybrid	Tees, hybrid ring ,		
	ring, directional coupler, Duplexer,	directional coupler,		
	isolator, circulator, cavity resonators	Duplexer, isolator,		
	2g. Differentiate E-Plane Tee, H-Plane	circulator, cavity		
	Tee and magic Tee.	resonators		
	2h. Explain the working of directional			
	coupler, isolator and circulator with			

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	 sketches. 2i. Explain working of cavity resonators with sketches. 	
	2j. Describe working of bends, corner, and twist taper with sketches.	2.4 Microwave Accessories: corners and bends, twist and taper
Unit– III Microwave tubes and	3a. Describe the frequency limitation of vacuum tubes at microwave frequency.	3.1 Limitations of vacuum tubes at microwave frequency
measurements	 3b. Explain function of reflex klystron with the help apple gate diagram. 3c. Explain structure and effects of various fields' acts on electron moving in the magnetron tube. 3d. Describe working of Travelling Wave Tube as an amplifier. 3e. Explain π mode oscillation and define frequency pushing and pulling. 3f. Explain two cavity klystron with apple gate diagram. 3g. Describe working of Backward Wave Oscillator 	 3.2 Microwave tubes amplifiers: Klystron - Two cavity and multi cavity, Travelling Wave Tube 3.3 Microwave tubes oscillators: Reflex klystron, Magnetron, Backward Wave Oscillator
	 3h. Explain microwave power measurement methods. 3i. Explain significance of VSWR measurement. 3j. Explain attenuation measurement methods. 3k. Describe Q measurement technique. 	3.4 Microwave measurement: power, frequency, wavelength (free space, guided and cutoff), VSWR, attenuation, 'Q'.
	31.Explain hazards due to microwave radiation.	3.5 Microwave radiation hazards: types (HERP, HERO, HERF), and protection from hazards

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Major outcomes in cognitive domain)	
Unit–IV Microwave semiconductor devices	 (Major outcomes in cognitive domain) 4a. Explain varactor diode's working with diagrams. 4b. Describe transfer electron effect using the energy level diagram for GUNN diode. 4c. Explain the working of GUNN diode as an oscillator. 4d. Explain principle, construction, working and application of TUNNEL diode 4e. Explain the working of a PIN diode as a switch. 4f. Explain the negative resistance principle for IMPATT/TRAPATT diode with sketches 	 4.1 Microwave diodes: VARACTOR diode , GUNN diode, TUNNEL, PIN diode, IMPATT diode, TRAPATT diode
	 4g. Explain the parametric amplifier with diagrams. 4h. Explain the frequency up and down conversion concepts for parametric amplifier 	 4.2 Parametric amplifier 4.3 High electron mobility transistors
	41. Explain the concept of high electron mobility transistor / strip line and micro strip circuits in brief.	4.4 Strip line and micro strip circuits
	4j. Describe working of RUBY MASER.	4.5 MASER: working principle, solid state RUBY MASER
Unit-V RADAR systems	5a. Explain basic principle of radar and sonar.	5.1 Introduction: Basic principle of Radar and Sonar
	 5b. Using given data for RADAR calculate the radar range /minimum received power / operating frequency range. 5c. Obtain the equation for maximum RADAR range. 5d. Using radar range equation describes how the parameters affect the maximum range. 	5.2 Radar range equation and examples, factors affecting maximum range.
	 5e. Explain scanning and tracking methods used in radar communication. 5f. Explain the working of pulsed radar with the help of block diagram. 5g. Describe display methods used for RADAR. 	5.3 Pulse radar: block diagram, radar antenna and scanning and tracking methods, Display methods

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Major outcomes in cognitive domain)	
	 5h. Explain the principle of CW Doppler radar and define blind speed. 5i. Describe the working of MTI radar with the help of suitable sketch. 5j. Explain how the CW radar used for range measurement. 5k. Compare the pulsed radar and CW radar 	 5.4 CW Doppler radar: Moving target indicator radar, blind speed, Frequency modulated CW radar. RADAR applications.

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Ma			y Marks
No.		Hours	R	U Lovol	A L ovol	Total Marks
Ι	Transmission lines and Microwaves	08	03	03	04	10
II	Microwave propagation and components	14	08	06	04	18
III	Microwave tubes and measurement	14	08	06	04	18
IV	Microwave semiconductor devices	12	02	06	04	12
V	RADAR systems	08	04	02	06	12
	Total	56	25	23	22	70

Legends: R = Remember U = Understand; A = Apply and above levels (Bloom's revised taxonomy)**Note:**This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured. Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.No.	Unit No.	Practical Exercises (Major outcomes in Psychomotor Domain)	Approx Hrs. Required
1	Ι	Measure open circuit & short circuit parameters for the given length of Transmission line.	02
2	Ι	Measure VSWR & reflection coefficient for given length of transmission line.	02
3	II	Set the microwave bench for optimum frequency operation	02
4	II	Measure the voltage maxima and minima on slotted waveguide and calculate free space, cut off and guided wavelength.	02
5	II	Identify various microwave components in the microwave circuit.	02
6	II	Determine the directivity, insertion loss, and coupling factor for a given directional coupler.	02
7	II	Determine the isolation factor for a given isolator.	02
8	II	Determine the coupling factor and, insertion loss, for a given circulator.	02
9	II	Calibrate the given variable attenuator.	02
10	III	Measure microwave frequency using the given (direct and /or indirect) frequency meter.	02
11	III	Measure VSWR for given microwave loads.	
12	III	Measure attenuation of given attenuator.	02
13	IV	Test different controls and functions of GUNN / KLYSTRON power supply.	
14	IV	Determine the characteristic of microwave crystal diode.	02
15	IV	Test the performance of TUNNEL diode	02
16	V	Investigate the fundamental concepts of Doppler radar	02
17	V	Setup radar kit and tune it for best performance.	02
18	V	Measure speed of a fan using RADAR kit.	02
19	V	Measure the variable speeds of moving objects using Velocity simulator	02
20	V	Measure the speed of a moving object with Doppler radar from different angles.	02
21	V	Calculate the speed of a moving object approaching or receding away from radar from different-different angles	02
22	V	Estimate the size of a moving objects using Radar.	02
23	V	Measure the distance traveled by any object using Radar	02
		Total Hours	46

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Prepare chart showing various microwave components.
- ii. Prepare/Download a dynamic animation to illustrate the following:
 - a. Microwave tubes.
 - b. EM waves propagation.
- iii. Visit a place where waveguides are used for microwave communication.(Such as airport, earth station, Telephone exchange, Microwave link repeater, TV broadcast).

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

Show video/animation films or Power point presentation to explain functioning of various microwave components and Microwave tubes.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S.No.	Title of Books	Author	Publication
1.	Microwave Engineering	Gupta Sanjeev	Khanna Publication, New Delhi (Latest edition)
2.	Electronics communication system	Kennedy George	Tata McGraw hill, New Delhi (Latest edition)
3.	Microwave engineering	Das Annapurna & Das S. K.	Mc. Graw Hill, New Delhi, (Latest edition)
4.	Microwave Devices & Circuits	Liao Samuel Y.	PHI Learning, New Delhi, (Latest edition)
5.	Microwave & RADAR Engineering	Gautam A. K.	S K Kataria Publications, New Delhi, (Latest edition)

B) List of Major Equipment/ Instrument with Broad Specifications

i.	Transmission line trainer.	
ii.	Gunn / klystron power supply	'X' band
iii.	VSWR meter	Resonated at 01 KHZ
iv.	Microwave bench(Gunn / klystron)	'X' band component.
v.	Microwave accessories	BNC to BNC cables, Main Chords.
vi.	Microwave components	'X' band
vii	Radar trainer kit	Microwave X band frequency range

C) List of Software/Learning Websites

- i. RF Tool box: MATLAB & SIMULINK:
- ii. http://www.rfmw.org/transmission_lines_and_distributed_systems_transmission_lines_transmission _lines.html
- iii. <u>http://www.rf-</u> <u>mw.org/transmission_lines_and_distributed_systems_transmission_lines_transmission_ lines_video_lectures.html</u>
- iv. www.nptel.ac.in

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics

- **Prof. M. N. Charel,** HOD (EC), Government polytechnic, Ahmedabad
- Prof. K. R. Vadalia, Sr. Lecturer (EC), Govt. Polytechnic, Rajkot.
- **Prof. K. R. Shah**, Sr. Lecturer (EC), Govt. Polytechnic, Patan.
- **Prof. R. G. Patankar**, Lecturer (EC), Government polytechnic, Gandhinagar.
- **Prof. (Dr). D. R. Bhojani,** HOD (EC), Darshan Institute of Engg. & Tech for Diploma Studies, Rajkot.

Coordinator and Faculty Members from NITTTR Bhopal

• **Prof. (Dr.) (Mrs.) Anjali Potnis,** DEEE,NITTTR, Bhopal